4. W. Dauben, J. Am. Chem. Soc., 84, 2015, 1963.

5. H. Kobayshi and S. Aiyoshi, Bul. Jap., 36, 823, 1963

8 February 1965

Novosibirsk Institute of Organic Chemistry, Siberian Division AS USSR

INVESTIGATION OF THE ALKALOIDS OF VINCA MAJOR, V. PUBESCENS, AND V. ROSEA. THE STRUCTURE OF MAJDINE [1]

N. Abdurakhimova, P. Kh. Yuldashev, and S. Yu. Yunusov

Khimiya Prirodnykh Soedinenii, Vol. 1, No. 3, pp. 224-225, 1965

We have isolated three alkoloids from Vinca major: reserpinine, akuammine, and majdine [1].

On heating with acetic anhydride, majdine, $C_{23}H_{23}O_6N_2$, isomerizes into isomajdine with mp 204-206°, $[\alpha]_D^{18} - 90^\circ$ (methanol). By comparing the IR and NMR spectra and other properties, it was found that majdine is possibly a stereoisomer of the hydroxyindole alkaloid carapanaubine, which has been isolated from Aspidosperma carapanaubica [2].

The mass spectra of majdine and carapanaubine were found to be identical. Consequently, majdine is a hydroxyindole base of the following structure:

The isomerization of majdine to isomajdine shows the presence in majdine of the α -orientation of the hydrogen atom at C₄ and of the β -orientation in isomajdine. Isomerization at C₄ is characteristic of the hydroxyindole alkaloids [3].

This indicates that majdine differs from carapanaubine by the configuration of the C₁₅, C₁₉, and C₂₀ carbon atoms.

If we take into consideration the fact that in the δ -yohimbine and hydroxyindole bases the hydrogen at C₁₅ has the α -orientation [4], the configuration of the C₁₉ and C₂₀ atoms in majdine remain undetermined.

A. P. Orekhov et al. [5] have isolated three bases from V. pubescens: vinine, pubescine, and a base with mp 194-195°.

The ethereal extraction of 1 kg of the above-ground parts of the plant Vinca pubescens, collected in the environs of the town of garga in the fruit-bearing season (12 October, 1959), yielded 6.35 g of total alkaloids (0.64%). They were separated with respect to their basicities into ten fractions. The third fraction yielded 200 mg of pubescine with mp 228-230°. After its purification by chromatography on alumina, it was found that it melted at 236-237°.

The IR spectra of pubescine are identical with those of reserpinine which we isolated from Vinca erecta [6]. The 6th-7th fractions gave 50 mg of vinine with mp 210-213°. After its recrystallization from acetone, it had mp 216-217°; molecular weight 428 (by mass spectroscopy).

A comparison of their mass spectra and other properties showed that vinine is identical with carapanaubine.

After the isolation of the alkaloids, the ethereal extract gave 0. 59% of ursolic acid.

Ninety grams of the roots of V. rosea grown in the Botanical Garden of the UzSSR Academy of Sciences yielded 0.5% of total alkaloids, 10% of which consisted of a base with mp 256-257°, $[\alpha]_D - 49^\circ$ (methanol), $C_{21}H_{24}ON_2$, forming a hydrochloride with mp 281-283°. A study of the UV and IR spectra and other properties of the base showed that it was ajmalicine [7].

Thus, reserpinine, akuammine, carapanaubine, ajmalicine, and the new base majdine have been isolated from Vinca major, V. pubescens and V. rosea.

REFERENCES

- 1. N. Abdurakhimova, P. Kh. Yuldashev, and S. Yu. Yunusov, DAN UzSSR, no. 4, 33, 1964.
- 2. B. Gilbert et al., J. Am. Chem. Soc., 85, 1523, 1963.
- 3. J. C. Seaton et al., Can. J. Chem., 38, 1035, 1960.
- 4. M. Shamma and Richey, J. Am. Chem. Soc., 85, 2507, 1963.
- 5. A. P. Orekhov, E. L. Gurevich, and S. S. Norkina, Khim. -farm. prom., no. 4, 9, 1934.
- 6. S. Yu. Yunusov and P. Kh. Yuldashev, DAN UzSSR, no. 9, 23, 1956.
- 7. M. M. Janot and Le Men, Comptes rendus, 243, 1786, 1956.

17 March 1965

Institute of the Chemistry of Plant Substances of the Academy of Sciences UZSSR

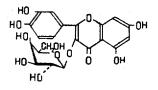
NEW FLAVONOIDS FROM THE LEAVES OF <u>CRATAEGUS CURVISEPALA</u> LINDM. (FAMILY ROSACEAE)

V. S. Batyuk, A. P. Prokopenko, and D. G. Kolesnikov

Khimiya Prirodnykh Soedinenii, Vol. 1, No. 3, pp. 225-226, 1965

By chromatography on polyamide columns of the total flavonoids isolated previously from the leaves of <u>Crataegus</u> <u>curvisepala</u> Lindm. (campylocalycate hawthorn) [1], two new flavonoids have been isolated: flavonoid (I) and flavonoid (II).

Flavonoid (I), $C_{15}H_{10}O_7$, mp 311-313°, formed a compound of the composition $C_{25}H_{20}O_{12}$, mp 199-201° on acetylation. On investigating the UV spectra of flavonoid (I) with the addition of sodium acetate, a bathochromic shift of 33 mµ was found in the short-wave region, which is apparently due to the presence of a strongly ionized hydroxyl group in position 7. A bathochromic shift of 19 mµ in the long-wave region of the UV spectrum of flavonoid (I) on the addition of sodium acetate and boric acid indicates the presence of hydroxyl groups in the 3'-, and 4'-positions [2].


The formation of phloroglucinol in the alkaline decomposition of flavonoid (I), and also the results of UV spectroscopy and the absence of a depression of the melting point of a mixture of flavonoid (I) and quercetin, indicates that flavonoid (I) is identical with quercetin (3, 5, 7, 3', 4'-pentahydroxyflavone).

Flavonoid (II), $C_{21}H_{20}O_{12}$, mp 238-239°, is a flavone glycoside. Hydrolysis with 2% hydrochloric acid of flavonoid (II) gave an aglycone of composition $C_{15}H_{10}O_7$ and mp 311-313°. Acetylation of the aglycone of flavonoid (II) gave a compound $C_{25}H_{20}O_{12}$ with mp 199-201°, the physicochemical properties of which did not differ from the acetylated derivative of quercetin. The methyl derivative of the aglycone of flavonoid (II), $C_{20}H_{20}O_7$, mp 152-154°, was identical with the methyl derivative of quercetin.

Among the products of the alkaline decomposition of the aglycone of flavonoid (II), paper chromatography showed the presence of phloroglucinol and 3, 4-dihydroxybenzoic acid, showing the presence in the aglycone of hydroxyl groups at the 5-, 7-, 3'-, and 4'-positions.

UV spectroscopy of the aglycone of flavonoid (II) with various additives (sodium acetate, sodium acetate + boric acid) confirmed the assumption that the aglycone of flavonoid (II) contains hydroxyl groups in the 5-, 7-, 3'-, and 4'-positions. A positive zirconium test [3] showed the presence in the aglycone of flavonoid (II) of a hydroxyl group in position 3. Thus, the aglycone of flavonoid (II) has the structure of quercetin.

Chromatography of the products of the acid hydrolysis of flavonoid (II) in the butanol-acetic acid-water (4: 1: 5) system showed the presence of galactose. A mixture of the phenylosazone of the sugar of flavonoid (II) and galactose gave no depression of the melting point (182-185°). The addition of zinc and hydrochloric acid to a solution of the aglycone of flavonoid (II) led to a characteristic red coloration. The positive zinc/hydrochloric acid reaction shows that the sugar is present in the 3- position of flavonoid (II) [4].

